If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+9.8t+150=0
a = -4.9; b = 9.8; c = +150;
Δ = b2-4ac
Δ = 9.82-4·(-4.9)·150
Δ = 3036.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9.8)-\sqrt{3036.04}}{2*-4.9}=\frac{-9.8-\sqrt{3036.04}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9.8)+\sqrt{3036.04}}{2*-4.9}=\frac{-9.8+\sqrt{3036.04}}{-9.8} $
| 3x-7/5=7 | | y+84=14 | | 4x+3x+2=2x+36 | | 7q+4=21 | | (4x-8)+(6x-24)=48 | | -12=0.5k-7.5 | | 4(2x+6)=2(4x+12) | | 101=11/2n | | 150m-100m+38,600=41,000-150m | | 6x^2+12^2=18^2 | | (5x^2-5)^2=0 | | 99=11/2n | | COS65=16/x | | 6y+84=84 | | 7(x+9)+7=-9-6 | | 30+2/9=x | | K+7=3k+1;3 | | 5x+8=5x+-6 | | 5x+8=5x+x | | 9x^2+16x+4=0 | | b*2=b+45 | | 9x^2+16x=4 | | 4x-1=1/8 | | x/30=91 | | 175m-100m+43,425=49,500-150m | | 5(x+3)-10=9x-9 | | 6^x-9=5x+2 | | 8y^2-24y+2=0 | | N+4n=20;5 | | (6x-1)+76=180 | | 6.5-0.1q=20-0.2q | | 7,50+0,75x=10+0,5x |